Urokinase Plasminogen Activator Induces Pro-Fibrotic/M2 Phenotype in Murine Cardiac Macrophages
نویسندگان
چکیده
OBJECTIVE Inflammation and fibrosis are intertwined in multiple disease processes. We have previously found that over-expression of urokinase plasminogen activator in macrophages induces spontaneous macrophage accumulation and fibrosis specific to the heart in mice. Understanding the relationship between inflammation and fibrosis in the heart is critical to developing therapies for diverse myocardial diseases. Therefore, we sought to determine if uPA induces changes in macrophage function that promote cardiac collagen accumulation. METHODS AND RESULTS We analyzed the effect of the uPA transgene on expression of pro-inflammatory (M1) and pro-fibrotic (M2) genes and proteins in hearts and isolated macrophages of uPA overexpressing mice. We found that although there was elevation of the pro-inflammatory cytokine IL-6 in hearts of transgenic mice, IL-6 is not a major effector of uPA induced cardiac fibrosis. However, uPA expressing bone marrow-derived macrophages are polarized to express M2 genes in response to IL-4 stimulation, and these M2 genes are upregulated in uPA expressing macrophages following migration to the heart. In addition, while uPA expressing macrophages express a transcriptional profile that is seen in tumor-associated macrophages, these macrophages promote collagen expression in cardiac but not embryonic fibroblasts. CONCLUSIONS Urokinase plasminogen activator induces an M2/profibrotic phenotype in macrophages that is fully expressed after migration of macrophages into the heart. Understanding the mechanisms by which uPA modulates macrophage function may reveal insights into diverse pathologic processes.
منابع مشابه
Cellular origin of pro-coagulant and (anti)-fibrinolytic factors in bleomycin-injured lungs.
Excessive pro-coagulant and decreased fibrinolytic activities in the alveolar compartment have been repeatedly documented for inflammatory and fibrotic lung diseases. The current authors determined the contribution of different resident lung cells to the altered local production of coagulation- and fibrinolysis-system components in bleomycin-injured mouse lungs via cell-specific and quantitativ...
متن کاملUrokinase-type plasminogen activator receptor (uPAR) ligation induces a raft-localized integrin signaling switch that mediates the hypermotile phenotype of fibrotic fibroblasts.
The urokinase-type plasminogen activator receptor (uPAR) is a glycosylphosphatidylinositol-linked membrane protein with no cytosolic domain that localizes to lipid raft microdomains. Our laboratory and others have documented that lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) exhibit a hypermotile phenotype. This study was undertaken to elucidate the molecular mechanism...
متن کاملSoluble urokinase plasminogen activator receptor (suPAR) in the emergency department: An update
Background: The biomarker soluble urokinase plasminogen activator receptor (suPAR) is an indicator of inflammation which is increased in a variety of chronic and acute disease states. Its most promising application in the emergency setting is to aid in the prognostic stratification of patients by identifying those at high risk of deterioration. This is a narrative review of studies evaluating t...
متن کاملEffect of macrophages on breast cancer cell proliferation, and on expression of hormone receptors, uPAR and HER-2
Malignant tumors, including breast cancers, are frequently infiltrated with innate immune cells and tumor-associated macrophages (TAMs) represent the major inflammatory component in stroma of many tumors. In this study, we examined the immunoreactivity of the macrophage markers CD68 and CD163 as well as the hormone receptors estrogen receptor α (ERα), progesterone receptor (PR), estrogen recept...
متن کاملActivation and proliferation signals in murine macrophages. Biochemical signals controlling the regulation of macrophage urokinase-type plasminogen activator activity by colony-stimulating factors and other agents.
Purified hematopoietic growth factors such as colony-stimulating factor-1 (CSF-1) or macrophage CSF, granulocyte-macrophage CSF, and interleukin-3 or multi-CSF, stimulate the urokinase-type plasminogen activator (u-PA) activity of murine bone marrow-derived macrophages (BMM) and resident peritoneal macrophages. Granulocyte-CSF was inactive. The increases in BMM u-PA activity were inhibited by t...
متن کامل